Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 24(2): 758-772, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29080261

RESUMO

Tropical montane cloud forests (TMCFs) harbour high levels of biodiversity and large carbon stocks. Their location at high elevations make them especially sensitive to climate change, because a warming climate is enhancing upslope species migration, but human disturbance (especially fire) may in many cases be pushing the treeline downslope. TMCFs are increasingly being affected by fire, and the long-term effects of fire are still unknown. Here, we present a 28-year chronosequence to assess the effects of fire and recovery pathways of burned TMCFs, with a detailed analysis of carbon stocks, forest structure and diversity. We assessed rates of change of carbon (C) stock pools, forest structure and tree-size distribution pathways and tested several hypotheses regarding metabolic scaling theory (MST), C recovery and biodiversity. We found four different C stock recovery pathways depending on the selected C pool and time since last fire, with a recovery of total C stocks but not of aboveground C stocks. In terms of forest structure, there was an increase in the number of small stems in the burned forests up to 5-9 years after fire because of regeneration patterns, but no differences on larger trees between burned and unburned plots in the long term. In support of MST, after fire, forest structure appears to approximate steady-state size distribution in less than 30 years. However, our results also provide new evidence that the species recovery of TMCF after fire is idiosyncratic and follows multiple pathways. While fire increased species richness, it also enhanced species dissimilarity with geographical distance. This is the first study to report a long-term chronosequence of recovery pathways to fire suggesting faster recovery rates than previously reported, but at the expense of biodiversity and aboveground C stocks.


Assuntos
Incêndios , Florestas , Árvores , Biodiversidade , Carbono , Mudança Climática , Peru , Fatores de Tempo , Clima Tropical
2.
New Phytol ; 214(3): 1002-1018, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27389684

RESUMO

We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax ), and the maximum rate of electron transport (Jmax )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (Ma , Na and Pa , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests.


Assuntos
Altitude , Florestas , Umidade , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Clima Tropical , Dióxido de Carbono/metabolismo , Ensaios Enzimáticos , Cinética , Modelos Biológicos , Nitrogênio/metabolismo , Peru , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Ribulose-Bifosfato Carboxilase/metabolismo , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...